Larutan Asam-Basa
A.Konsep Asam-Basa
1.Teori Arrhenius
Pada tahun 1886, Svante August Arrhenius, ilmuwan asal Swedia mengemukakan teori mengenai asam dan basa. Menurut Arrhenius, asam didefinisikan sebagai zat yang menghasilkan ion hidronium dan ion hidrogen apabila dilarutkan dalam air. Contohnya yaitu asam klorida , asam nitrat , dan lain-lain. Arrhenius mendefinisikan basa sebagai zat yang menghasilkan ion hidroksida jika dilarutkan dalam air. Contohnya yaitu Natrium Hidroksida dan lain-lain.
2.Teori Bronsted-Lowry
Pada 1923,Johannes Nicolaus Bronsted, kimiawan dari Denmark dan Thomas Martin Lowry kimiawan dari Amerika Serikat mendefinisikan tentang asam-basa.Menurut Bronsted-Lowry, asam adalah spesi yang memberikan (donor) proton sedangkan basa adalah spesi yabg bertindak sebagai penerima (akseptor) proton dalam suatu transfer proton. Teori Bronsted-Lowry melengkapi konsep asam-basa Arrhenius.Ion hidroksida dalam teori Arrhenius tetap menjadi basa dalam teori Bronsted-Lowry.Ion hidroksida ini menerima ion hidrogen membentuk air(H2O). Pada reaksi asam-basa Bronsted-Lowry terdapat dua pasangan asam-basa konjugasi.
3. Teori Lewis
Pada 1923, Gilbert N.Lewis , kimiawan dari Amerika Serikat mendefinisikan asam-basa berdasarkan teori ikatan kimia. Menurut Lewis, asam adalah penerima (akseptor) pasangan elektron bebas. Sementara itu, basa adalah pemberi (donor) pasangan elektron bebas. Spesi apapun yang dapat menerima pasangan elektron bebas disebut asam Lewis.
Sedangkan spesi berupa molekul atau ion yang mendonorkan pasangan elektron bebasnya disebut basa Lewis.
B.Sifat Larutan Asam dan Basa
1.Asam
Larutan asam mempunyai sifat-sifat seperti berikut.
a.Berasa masam
Rasa masam hanya dapat diketahui melalui uji organoleptik(dicicipi). Uji ini hanya bisa pada makanan yang memiliki sifat asam lemah.
b.Korosif
Sifat ini dapat merusak berbagai benda logam dan nonlogam.
c.Dalam air terurai menjadi hidrogen dan sisa asam (ion negatif)
d.Dapat mengubah warna lakmus biru menjadi merah dan pH kurang dari 7
e.Dapat bereaksi dengan logam
Reaksi antara asam dengan logam menghasilkan garam dan gas H2
f.Dapat bereaksi dengan garam karbonat
Reaksi antara asam dengan garam karbpnat menghasilkan garam, air dan gas karbondioksida
g.Dapat bereaksi dengan Basa
Reaksi antara asam dengan basa menghasilkan garam dan air
2.Basa
Larutan basa mempunyai sifat sifat sebagai berikut
a.Berasa pahit
Rasa pahit pada basa seperti rasa pahit pada sabun.
b.Jika mengenai kulit akan terasa licin
c.Bersifat kaustik
d.Dapat mengubah kertas lakmus merah menjadi biru dan pH lebih besar dari 7
e.Dalam air terionisasi menjadi sisa basa (ion logam) dan ion hidroksida
f.Dapat bereaksi dengan asam menghasilkan garam dan air
3.Identifikasi Asam-Basa
a.Identifikasi Asam-Basa Menggunakan Kertas Lakmus
-Kertas lakmus merah, jika dicelupkan kedalam larutan asam tidak akan berubah warna tetapi jika dicelupkan didalam larutan basa akan berubah warna menjadi biru.
-Kertas lakmua biru, jika dicelupkan kedalam larutan asam akan berubah warna menjadi warna merah tetapi jika dicelupkan ke larutan basa tidak akan berubah warna.
Sumber: Intan Pariwara
Ayo Belajar kimia
Selasa, 01 Oktober 2019
Selasa, 24 September 2019
IKATAN DAN UNSUR KIMIA
1. Terbentuknya Ikatan Kimia
Pada umumnya atom tidak berada dalam keadaan bebas, tetapi bergabung dengan atom lain membentuk senyawa.
Antara dua atom atau lebih dapat saling berinteraksi dan membentuk molekul. Interaksi ini selalu disertai dengan pelepasan energi, sedangkan gaya-gaya yang menahan atom-atom dalam molekul merupakan suatu ikatan yang dinamakan ikatan kimia. Ikatan kimia terbentuk karena unsur-unsur ingin memiliki struktur elektron stabil. Struktur elektron stabil yang dimaksud yaitu struktur elektron gas mulia (Golongan VIII A).
Sebuah atom cenderung melepaskan elektron apabila memiliki elektron terluar 1, 2, atau 3 elektron dibandingkan konfigurasi elektron gas mulia yang terdekat.
Contoh:
11Na : 2 8 1 ; Gas mulia terdekat ialah 10Ne : 2 8
Jika dibandingkan dengan atom Ne, maka atom Na kelebihan satu elektron. Untuk memperoleh kestabilan, dapat dicapai dengan cara melepaskan satu elektron.
Na (2 8 1) à Na+ (2 8) + e–
Sebuah atom cenderung menerima elektron apabila memiliki elektron terluar 4, 5, 6, atau 7 elektron dibandingkan konfigurasi elektron gas mulia yang terdekat.
Contoh:
9F : 2 7 ; Gas mulia yang terdekat ialah 10Ne : 2 8.
Konfigurasi Ne dapat dicapai dengan cara menerima satu elektron.
F (2 7) + e– à F- (2 8)
Jika masing-masing atom sukar untuk melepaskan elektron (memiliki keelektronegatifan tinggi), maka atom-atom tersebut cenderung menggunakan elektron secara bersama dalam membentuk suatu senyawa.
Jika suatu atom melepaskan elektron, berarti atom tersebut memberikan elektron kepada atom lain. Sebaliknya, jika suatu atom menangkap elektron, berarti atom itu menerima elektron dari atom lain. Jadi, susunan elektron yang stabil dapat dicapai dengan berikatan dengan atom lain.
Kecenderungan atom-atom untuk memiliki struktur atau konfigurasi elektron seperti gas mulia atau 8 elektron pada kulit terluar disebut ”kaidah oktet”.
Sementara itu atom-atom yang mempunyai kecenderungan untuk memiliki konfigurasi elektron seperti gas helium disebut ”kaidah duplet”.
Agar dapat mencapai struktur elektron seperti gas mulia, antarunsur mengadakan hal-hal berikut.
1. Perpindahan elektron dari satu atom ke atom lain (serah terima elektron).
Atom yang melepaskan elektron akan membentuk ion positif, sedangkan atom yang menerima elektron akan berubah menjadi ion negatif, sehingga terjadilah gaya elektrostatik atau tarik-menarik antara kedua ion yang berbeda muatan. Ikatan ini disebut ikatan ion.
2. Pemakaian bersama pasangan elektron oleh dua atom sehingga terbentuk ikatan kovalen.
3. Selain itu, dikenal juga adanya ikatan lain yaitu:
a. Ikatan logam,
b. Ikatan hidrogen,
c. Ikatan Van der Waals.
2. Jenis-Jenis Ikatan Kimia
2.1 Ikatan Ion
Atom-atom yang melepas elektron menjadi ion positif (kation) sedang atom-atom yang menerima elektron menjadi ion negatif (anion). Ikatan ion biasanya disebut ikatan elektrovalen. Senyawa yang memiliki ikatan ion disebut senyawa ionik. Senyawa ionik biasanya terbentuk antara atom-atom unsur logam dan nonlogam.
Ikatan ion yaitu ikatan yang terbentuk sebagai akibat adanya gaya tarik-menarik antara ion positif dan ion negatif, ini terjadi karena kedua ion tersebut memiliki perbedaan keelektronegatifan yang besar. Ion positif terbentuk karena unsur logam melepaskan elektronnya, sedangkan ion negatif terbentuk karena unsur nonlogam menerima elektron. Ikatan ion terjadi karena adanya serah terima elektron. Contoh: NaCl, MgO, CaF2, Li2O, AlF3, dan lain-lain. Sebagai contoh, dalam pembentukan senyawa ionik NaCl terjadi transfer elektron dari atom Na ke atom Cl.

Ikatan ion merupakan ikatan yang relatif kuat. Pada suhu kamar, semua senyawa ion berupa zat padat kristal dengan struktur tertentu. NaCl mempunyai struktur yang berbentuk kubus, di mana tiap ion Na+ dikelilingi
oleh 6 ion Cl– dan tiap ion Cl– dikelilingi oleh 6 ion Na+.
Atom-atom membentuk ikatan ion karena masing-masing atom ingin mencapai keseimbangan/kestabilan seperti struktur elektron gas mulia. Ikatan ion terbentuk antara:
a. ion positif dengan ion negatif,
b. atom-atom berenergi potensial ionisasi kecil dengan atom-atom berafinitas elektron besar (Atom-atom unsur golongan IA, IIA dengan atom-atom unsur golongan VIA, VIIA),
c. atom-atom dengan keelektronegatifan kecil dengan atom-atom yang mempunyai keelektronegatifan besar.
Sifat-sifat senyawa ion sebagai berikut.
a. Dalam bentuk padatan tidak menghantar listrik karena partikel-partikel ionnya terikat kuat pada kisi, sehingga tidak ada elektron yang bebas bergerak.
b. Leburan dan larutannya menghantarkan listrik.
c. Umumnya berupa zat padat kristal yang permukaannya keras dan sukar digores.
d. Titik leleh dan titik didihnya tinggi.
e. Larut dalam pelarut polar dan tidak larut dalam pelarut nonpolar.
2.2 Ikatan Kovalen
Bila atom-atom yang memiliki keelektronegatifan sama bergabung, maka tidak akan terjadi perpindahan elektron, tetapi kedua elektron itu digunakan bersama oleh kedua atom yang berikatan. Ikatan kovalen adalah ikatan yang terjadi antara unsur nonlogam dengan unsur nonlogam yang lain dengan cara pemakaian bersama pasangan elektron Apabila yang digunakan bersama dua pasang atau tiga pasang maka akan terbentuk ikatan kovalen rangkap dua atau rangkap tiga.
Ikatan kovalen terjadi karena pemakaian bersama pasangan elektron oleh atom-atom yang berikatan. Pasangan elektron yang dipakai bersama disebut pasangan elektron ikatan (PEI) dan pasangan elektron valensi yang tidak terlibat dalam pembentukan ikatan kovalen disebut pasangan elektron bebas (PEB). Ikatan kovalen umumnya terjadi antara atom-atom unsur nonlogam, bisa sejenis (contoh: H2, N2, O2, Cl2, F2, Br2, I2) dan berbeda jenis (contoh: H2O, CO2, dan lain-lain). Sebagai contoh, 2 atom H berikatan kovalen membentuk molekul H2 dan 2 atom Cl berikatan kovalen membentuk molekul Cl2.

Struktur Lewis adalah penggambaran ikatan kovalen yang menggunakan lambang titik Lewis di mana PEI dinyatakan dengan satu garis atau sepasang titik yang diletakkan
di antara kedua atom dan PEB dinyatakan dengan titik-titik pada masing-masing atom.
Sepasang elektron bisa digantikan dengan sebuah garis yang disebut tangan ikatan.Sifat-sifat senyawa kovalen sebagai berikut:
a. Pada suhu kamar umumnya berupa gas (misal H2, O2, N2, Cl2, CO2), cair (misalnya: H2O dan HCl), ataupun berupa padatan.
b. Titik didih dan titik lelehnya rendah, karena gaya tarik-menarik antarmolekulnya lemah meskipun ikatan antaratomnya kuat.
c. Larut dalam pelarut nonpolar dan beberapa di antaranya dapat berinteraksi dengan pelarut polar.
d. Larutannya dalam air ada yang menghantar arus listrik (misal HCl) tetapi sebagian besar tidak dapat menghantarkan arus listrik, baik padatan, leburan, atau larutannya.
Anda dapat mengetahui jumlah kekurangan elektron masing-masing unsur untuk mencapai kaidah oktet dan dupet (kestabilan struktur seperti struktur elektron gas mulia). Jarak antara dua inti atom yang berikatan disebut panjang ikatan. Pada pasangan unsur yang sama, ikatan tunggal merupakan ikatan yang paling lemah dan paling panjang.semakin kuat ikatan dan panjang ikatannya semakin kecil/pendek.
Adapun macam-macam ikatan kovalen berdasarkan jumlah PEI-nya yaitu ikatan kovalen tunggal yaitu ikatan kovalen yang memiliki 1 pasang PEI. Contoh: H2, H2O (konfigurasi elektron H = 1; O = 2, 6) atau H – H , H-O-H , ikatan kovalen rangkap 2 yaitu ikatan kovalen yang memiliki 2 pasang PEI. Contoh: O2, CO2 (konfigurasi elektron O = 2, 6; C = 2, 4) atau O = O , O = C = O, dan ikatan kovalen rangkap 3 yaitu ikatan kovalen yang memiliki 3 pasang PEI. Contoh: N2 (Konfigurasi elektron N = 2, 5) atau N ≡ N.
Ikatan kovalen yang hanya melibatkan sepasang elektron disebut ikatan tunggal (dilambangkan dengan satu garis), sedangkan ikatan kovalen yang melibatkan lebih dari sepasang elektron disebut ikatan rangkap. Ikatan yang melibatkan dua pasang elektron disebut ikatan rangkap dua (dilambangkan dengan dua garis), sedangkan ikatan yang melibatkan tiga pasang elektron disebut ikatan rangkap tiga (dilambangkan dengan tiga garis).
a. Ikatan Kovalen Koordinasi
Ikatan kovalen koordinasi adalah ikatan kovalen yang PEI-nya berasal dari salah satu atom yang berikatan. Ikatan kovalen koordinasi adalah ikatan kovalen di mana pasangan elektron yang dipakai bersama hanya disumbangkan oleh satu atom, sedangkan atom yang satu lagi tidak menyumbangkan elektron.
Ikatan kovalen koordinat dapat terjadi antara suatu atom yang mempunyai pasangan elektron bebas dan sudah mencapai konfigurasi oktet dengan atom lain yang membutuhkan dua elektron dan belum mencapai konfigurasi oktet.
Ketika membuat rumus Lewis dari asam-asam oksi (misalnya asam sulfat/H2SO4) lebih dahulu dituliskan bayangan strukturnya kemudian membuat rumus Lewisnya yang dimulai dari atom hidrogen.
Pada ikatan kovalen biasa, pasangan elektron yang digunakan bersama dengan atom lain berasal dari masing-masing atom unsur yang berikatan maka disebut ikatan kovalen koordinasi.
b. Polarisasi Ikatan Kovalen
Perbedaan keelektronegatifan dua atom menimbulkan kepolaran senyawa. Adanya perbedaan keelektronegatifan tersebut menyebabkan pasangan elektron ikatan lebih tertarik ke salah satu unsur sehingga membentuk dipol maka menjadi POLAR.
Pada senyawa HCl, pasangan elektron milik bersama akan lebih dekat pada Cl karena daya tarik terhadap elektronnya lebih besar dibandingkan H. Hal itu menyebabkan terjadinya polarisasi pada ikatan H – Cl. Atom Cl lebih negatif daripada atom H, hal tersebut menyebabkan terjadinya ikatan kovalen polar.
Contoh:
1) Senyawa kovalen polar: HCl, HBr, HI, HF, H2O, NH3.
2) Senyawa kovalen nonpolar: H2, O2, Cl2, N2, CH4, C6H6, BF3.
Pada ikatan kovalen yang terdiri lebih dari dua unsur, kepolaran senyawanya ditentukan oleh hal-hal berikut.
1) Jumlah momen dipol, jika jumlah momen dipol = 0, senyawanya bersifat nonpolar. Jika momen dipol tidak sama dengan 0 maka senyawanya bersifat polar.
2) Bentuk molekul, jika bentuk molekulnya simetris maka senyawanya bersifat nonpolar, sedangkan jika bentuk molekulnya tidak simetris maka senyawanya bersifat polar.
Hal ini disebabkan karena setiap unsur mempunyai daya tarik elektron (keelektronegatifan) yang berbeda-beda. Salah satu akibat dari keelektronegatifan adalah terjadinya polarisasi pada ikatan kovalen.
Kepolaran dinyatakan dengan momen dipol (μ), yaitu hasil kali antara muatan (Q) dengan satuan Coloumb dengan jarak (r) satuan meter.
μ = Q × r
Satuan momen dipol adalah debye (D), di mana 1 D = 3,33 × 10–30 Cm.
Berikut adalah sajian beberapa momen dipol dari senyawa kovalen.
Senyawa
|
Keelektronegatifan
|
Momen Dipol (D)
|
HF
HCl
HBr
HI
|
1,8
1,0
0,8
0,5
|
1,91
1,03
0,79
0,38
|
2.3 Ikatan Logam
Ikatan logam adalah ikatan kimia yang terbentuk akibat penggunaan bersama elektron-elektron valensi antar atom-atom logam maka menghasilkan gaya tarik. Contoh: logam besi, seng, dan perak. Ikatan logam bukanlah ikatan ion atau ikatan kovalen. Salah satu teori yang dikemukakan untuk menjelaskan ikatan logam adalah teori lautan elektron. Menurut teori ini, atom logam harus berikatan dengan atom-atom logam yang lain untuk mencapai konfigurasi elektron gas. 
Contoh terjadinya ikatan logam. Tempat kedudukan elektron valensi dari suatu atom besi (Fe) dapat saling tumpang tindih dengan tempat kedudukan elektron valensi dari atom-atom Fe yang lain. Tumpang tindih antarelektron valensi ini memungkinkan elektron valensi dari setiap atom Fe bergerak bebas dalam ruang di antara ion-ion Fe+ membentuk lautan elektron. Karena muatannya berlawanan (Fe2+ dan 2 e–), maka terjadi gaya tarik-menarik antara ion-ion Fe+ dan elektron-elektron bebas ini. Akibatnya terbentuk ikatan yang disebut ikatan logam. Logam mempunyai sifat-sifat antara lain:
a. pada suhu kamar umumnya padat,
b. mengilap,
c. menghantarkan panas dan listrik dengan baik,
d. dapat ditempa dan dibentuk.
Dalam bentuk padat, atom-atom logam tersusun dalam susunan yang sangat rapat (closely packed). Susunan logam terdiri atas ion-ion logam dalam lautan elektron. Dalam susunan seperti ini elektron valensinya relatif bebas bergerak dan tidak terpaku pada salah satu inti atom, sehingga elektron-elektron ini tidak terus-menerus digunakan bersama oleh dua ion yang sama. Bila diberikan energi, elektron-elektron ini mudah dioperkan dari atom ke atom. Telah kita ketahui bahwa unsur logam memiliki sedikit elektron valensi. Berarti, pada kulit luar atom logam terdapat banyak orbital kosong. Hal ini menyebabkan elektron valensi unsur logam dapat bergerak bebas dan dapat berpindah dari satu orbital ke orbital lain dalam satu atom atau antar atom.
Sumber : http://andellaforester.blogspot.com/2014/04/makalah-ikatan-kimia.html
https://www.studiobelajar.com/ikatan-kimia/
https://id.wikipedia.org/wiki/Ikatan_logam
Sumber : http://andellaforester.blogspot.com/2014/04/makalah-ikatan-kimia.html
https://www.studiobelajar.com/ikatan-kimia/
https://id.wikipedia.org/wiki/Ikatan_logam
Selasa, 10 September 2019
Bilangan Kuantum
Bilangan kuantum (dalam fungsi gelombang) adalah bilangan yang memiliki makna khusus dalam menjelaskan keadaan sistem kuantum.Setelah dikemukakannya teori dualisme partikel−gelombang, pada tahun 1926 Erwin Schrödinger mengajukan teori mekanika kuantum yang menjelaskan struktur atom. Model atom mekanika kuantum Schrödinger dinyatakan dalam persamaan matematis yang disebut persamaan gelombang. Penyelesaian persamaan gelombang Schrödinger untuk atom hidrogen menghasilkan fungsi gelombang (ψ) atau orbital atom yang menggambarkan keberadaan elektron dalam atom. Kuadrat dari fungsi gelombang, ψ2, memiliki arti khusus yaitu besar probabilitas menemukan elektron dalam ruang dengan volum tertentu di sekitar inti atom. Sebagaimana asas ketidakpastian Heisenberg, posisi elektron dalam atom tidak dapat dipastikan, namun hanya dapat diketahui tempat di mana elektron paling mungkin ditemukan.
Orbital dan Bilangan Kuantum
Setiap orbital atom memiliki satu set tiga bilangan kuantum yang unik, antara lain bilangan kuantum utama (n), azimuth (atau momentum angular) (l), dan magnetik (ml). Ketiga bilangan kuantum tersebut dapat mendeskripsikan tingkat energi orbital dan juga ukuran, bentuk, dan orientasi dari distribusi probabilitas radial orbital atom. Lalu, terdapat bilangan yang keempat, yakni bilangan kuantum spin (ms), yang memberikan informasi spin suatu elektron dalam sebuah orbital. Setiap elektron dalam sebuah atom memiliki satu set empat bilangan kuantum yang unik, yakni n, l, ml, dan ms.
- Bilangan kuantum utama (n) mendeskripsikan ukuran dan tingkat energi orbital. Semakin besar nilai n, maka semakin besar ukuran orbital dan semakin tinggi tingkat energinya. Nilai n yang diperbolehkan adalah bilangan bulat positif (1, 2, 3, dan seterusnya).
- Bilangan kuantum azimuth (l) mendeskripsikan bentuk orbital. Nilai l yang diperbolehkan adalah bilangan bulat dari 0 hingga n − 1.
- Bilangan kuantum magnetik (ml) mendeskripsikan orientasi orbital. Nilai ml yang diperbolehkan adalah bilangan bulat dari −l hingga +l.
- Bilangan kuantum spin (ms) mendeskripsikan arah spin elektron dalam orbital. Nilai ms yang diperbolehkan adalah +½ atau −½.
Kombinasi bilangan kuantum n, l, dan ml yang mungkin pada 4 kulit elektron pertama dapat dilihat pada tabel berikut:

Bentuk Orbital Atom
Orbital s
Orbital s adalah orbital dengan l = 0 berbentuk bola dengan inti atom pada bagian tengah. Oleh karena bola hanya memiliki satu orientasi, semua orbital s hanya memiliki satu nilai ml, yaitu ml = 0. Orbital 1s memiliki densitas (kerapatan) elektron tertinggi pada bagian inti atom dan kemudian densitas semakin menurun perlahan-lahan setelah menjauh dari inti atom. Orbital 2s memiliki dua daerah dengan densitas elektron tinggi. Di antara kedua daerah tersebut terdapat simpul bola, di mana probabilitas menemukan elektron pada daerah tersebut menurun hingga nol (ψ2 = 0). Pada orbital 3s, terdapat tiga daerah dengan densitas elektron tinggi dan dua simpul. Pola bertambahnya simpul orbital s ini masih terus berlanjut dengan orbital 4s, 5s, dan seterusnya.

Representasi orbital 1s, 2s, dan 3s
(Sumber: McMurry, John E., Fay, Robert C., & Robinson, Jill K. 2016. Chemistry (7th edition). New Jersey: Pearson Education, Inc.)
(Sumber: McMurry, John E., Fay, Robert C., & Robinson, Jill K. 2016. Chemistry (7th edition). New Jersey: Pearson Education, Inc.)
Orbital p
Orbital p adalah orbital dengan l = 1 berbentuk seperti balon terpilin dengan dua cuping. Kedua cuping terletak pada dua sisi inti atom yang saling bersebrangan. Inti atom terletak pada bidang simpul orbital p, yakni di antara dua cuping yang masing-masing memiliki densitas elektron tinggi. Orbital p memiliki tiga jenis orientasi ruang, px, py, dan pz, sebagaimana terdapat tiga nilai ml yang mungkin, yaitu −1, 0, atau +1. Ketiga orbital p tersebut terletak saling tegak lurus pada sumbu x, y, dan z koordinat Kartesius dengan bentuk, ukuran, dan energi yang sama.

Representasi orbital 2p: px, py, dan pz
(Sumber: McMurry, John E., Fay, Robert C., & Robinson, Jill K. 2016. Chemistry (7th edition). New Jersey: Pearson Education, Inc.)
(Sumber: McMurry, John E., Fay, Robert C., & Robinson, Jill K. 2016. Chemistry (7th edition). New Jersey: Pearson Education, Inc.)
Orbital d
Orbital d adalah orbital dengan l = 2. Orbital d memiliki lima jenis orientasi, sebagaimana terdapat lima nilai ml yang mungkin, yaitu −2, −1, 0, +1, atau +2. Empat dari lima orbital d, antara lain dxy, dxz dyz, dan dx2−y2, memiliki empat cuping seperti bentuk daun semanggi. Orbital d kelima, dz2, memiliki dua cuping utama pada sumbu z dan satu bagian berbentuk donat pada bagian tengah.

Representasi orbital 3d: dz2, dx2−y2, dxy, dxz, dan dyz
(Sumber: Chang, Raymond & Goldsby, Kenneth A. 2016. Chemistry (12th edition). New York: McGraw-Hill Education)
(Sumber: Chang, Raymond & Goldsby, Kenneth A. 2016. Chemistry (12th edition). New York: McGraw-Hill Education)
Orbital f
Orbital f adalah orbital dengan l = 3. Orbital f memiliki tujuh jenis orientasi, sebagaimana terdapat tujuh nilai ml yang mungkin (2l + 1 = 7). Ketujuh orbital f memiliki bentuk yang kompleks dengan beberapa cuping.

Representasi ketujuh orbital 4f
(Sumber: Atkins, Peter & Jones, Loretta. 2010. Chemical Principles: The Quest for Insight (5th edition). New York: W.H. Freeman & Company)
(Sumber: Atkins, Peter & Jones, Loretta. 2010. Chemical Principles: The Quest for Insight (5th edition). New York: W.H. Freeman & Company)
Konfigurasi Elektron
Setelah memahami hubungan keberadaan elektron dalam atom dengan orbital pada teori atom mekanika kuantum, berikut akan dibahas konfigurasi elektron, yaitu penyusunan elektron-elektron dalam orbital-orbital pada kulit-kulit atom multi elektron. Aturan-aturan dalam penentuan konfigurasi elektron berdasarkan orbital, antara lain:
- Asas Aufbau: Elektron menempati orbital-orbital dimulai dari tingkat energi yang terendah, dimulai dari 1s, 2s, 2p, dan seterusnya seperti urutan subkulit yang terlihat pada gambar berikut.

Urutan tingkat energi subkulit
(Sumber: Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry: Structure and Dynamics (5th edition). New Jersey: John Wiley & Sons, Inc.)
(Sumber: Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry: Structure and Dynamics (5th edition). New Jersey: John Wiley & Sons, Inc.)
- Asas larangan Pauli: Tidak ada dua elektron dalam satu atom yang memiliki keempat bilangan kuantum yang sama. Setiap orbital maksimum diisi oleh 2 elektron yang memiliki spin yang berlawanan (ms = +½ dan ms = −½).
- Kaidah Hund: Jika ada orbital dengan tingkat energi yang sama, konfigurasi elektron dengan energi terendah adalah dengan jumlah elektron tak berpasangan dengan spin paralel yang paling banyak.

Diagram orbital dan konfigurasi elektron berdasarkan orbital dari 10 unsur pertama
(Sumber: Gilbert, Thomas N. et al. 2012. Chemistry: The Science in Context (3rd edition). New York: W. W. Norton & Company, Inc.)
(Sumber: Gilbert, Thomas N. et al. 2012. Chemistry: The Science in Context (3rd edition). New York: W. W. Norton & Company, Inc.)
Berdasarkan eksperimen, terdapat anomali konfigurasi elektron dari aturan-aturan di atas. Subkulit d memiliki kecenderungan untuk terisi setengah penuh atau terisi penuh. Contohnya, konfigurasi elektron 24Cr: [Ar] 4s1 3d5 lebih stabil dibanding [Ar] 4s2 3d4; dan 29Cu: [Ar] 4s1 3d10 lebih stabil dibanding [Ar] 4s2 3d9.
Konfigurasi elektron untuk ion monoatomik (seperti Na+, K+, Ca2+, S2-, Br–) dapat ditentukan dari konfigurasi elektron atom netralnya terlebih dahulu. Pada kation (ion bermuatan positif) monoatomik Ax+ yang bermuatan x+, sebanyak x elektron dilepas (dikurangi) dari kulit elektron terluar atom netral A. Pada anion (ion bermuatan negatif) monoatomik By− yang bermuatan y−, sebanyak y elektron ditangkap (ditambahkan) pada orbital level energi terendah yang masih belum penuh oleh elektron.
Contoh Soal Bilangan Kuantum
Tentukan konfigurasi elektron dan diagram elektron dari atom unsur dan ion monoatomik berikut.
a. 27Co
b. 32Ge
c. 20Mg2+
d. 26Fe3+
e. 8O2−
Pembahasan:
a. 27Co: 1s2 2s2 2p6 3s2 3p6 4s2 3d7 atau [Ar] 4s2 3d7
b. 32Ge: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2 atau [Ar] 4s2 3d10 4p2
c. 20Mg: 1s2 2s2 2p6 3s2 3p6 4s2 atau [Ar] 4s2
20Mg2+: 1s2 2s2 2p6 3s2 3p6 atau [Ar] (sebanyak 2 elektron dikurangi dari kulit terluar: 4s2−2)
d. 26Fe: 1s2 2s2 2p6 3s2 3p6 4s2 3d6 atau [Ar] 4s2 3d6
26Fe3+: 1s2 2s2 2p6 3s2 3p6 3d5 atau [Ar] 3d5 (sebanyak 3 elektron dikurangi dari kulit terluar: 4s2−2 3d6−1)
e. 8O: 1s2 2s2 2p4 atau [He] 2s2 2p4
8O2−: 1s2 2s2 2p6 atau [He] 2s2 2p6 atau [Ne] (sebanyak 2 elektron ditambahkan: 2s2 2p4+2)
Bilangan Kuantum
Bilangan kuantum (dalam fungsi gelombang) adalah bilangan yang memiliki makna khusus dalam menjelaskan keadaan sistem kuantum. Bilangan-bilangan kuantum dapat memberikan deskripsi keadaan elektron dalam atom.
BILANGAN KUANTUM
Setelah dikemukakannya teori dualisme partikel−gelombang, pada tahun 1926 Erwin Schrödinger mengajukan teori mekanika kuantum yang menjelaskan struktur atom. Model atom mekanika kuantum Schrödinger dinyatakan dalam persamaan matematis yang disebut persamaan gelombang. Penyelesaian persamaan gelombang Schrödinger untuk atom hidrogen menghasilkan fungsi gelombang (ψ) atau orbital atom yang menggambarkan keberadaan elektron. Kuadrat dari fungsi gelombang, ψ2, memiliki arti khusus yaitu besar probabilitas menemukan elektron dalam ruang dengan volum tertentu di sekitar inti atom. Sebagaimana asas ketidakpastian Heisenberg, posisi elektron dalam atom tidak dapat dipastikan, namun hanya dapat diketahui tempat di mana elektron paling mungkin ditemukan.
Orbital dan Bilangan Kuantum
Setiap orbital atom memiliki satu set tiga bilangan kuantum yang unik, antara lain bilangan kuantum utama (n), azimuth (atau momentum angular) (l), dan magnetik (ml). Ketiga bilangan kuantum tersebut dapat mendeskripsikan tingkat energi orbital dan juga ukuran, bentuk, dan orientasi dari distribusi probabilitas radial orbital atom. Lalu, terdapat bilangan yang keempat, yakni bilangan kuantum spin (ms), yang memberikan informasi spin suatu elektron dalam sebuah orbital. Setiap elektron dalam sebuah atom memiliki satu set empat bilangan kuantum yang unik, yakni n, l, ml, dan ms.
- Bilangan kuantum utama (n) mendeskripsikan ukuran dan tingkat energi orbital. Semakin besar nilai n, maka semakin besar ukuran orbital dan semakin tinggi tingkat energinya. Nilai n yang diperbolehkan adalah bilangan bulat positif (1, 2, 3, dan seterusnya).
- Bilangan kuantum azimuth (l) mendeskripsikan bentuk orbital. Nilai l yang diperbolehkan adalah bilangan bulat dari 0 hingga n − 1.
- Bilangan kuantum magnetik (ml) mendeskripsikan orientasi orbital. Nilai ml yang diperbolehkan adalah bilangan bulat dari −l hingga +l.
- Bilangan kuantum spin (ms) mendeskripsikan arah spin elektron dalam orbital. Nilai ms yang diperbolehkan adalah +½ atau −½.
Kombinasi bilangan kuantum n, l, dan ml yang mungkin pada 4 kulit elektron pertama dapat dilihat pada tabel berikut:

Bentuk Orbital Atom
Orbital s
Orbital s adalah orbital dengan l = 0 berbentuk bola dengan inti atom pada bagian tengah. Oleh karena bola hanya memiliki satu orientasi, semua orbital s hanya memiliki satu nilai ml, yaitu ml = 0. Orbital 1s memiliki densitas (kerapatan) elektron tertinggi pada bagian inti atom dan kemudian densitas semakin menurun perlahan-lahan setelah menjauh dari inti atom. Orbital 2s memiliki dua daerah dengan densitas elektron tinggi. Di antara kedua daerah tersebut terdapat simpul bola, di mana probabilitas menemukan elektron pada daerah tersebut menurun hingga nol (ψ2 = 0). Pada orbital 3s, terdapat tiga daerah dengan densitas elektron tinggi dan dua simpul. Pola bertambahnya simpul orbital s ini masih terus berlanjut dengan orbital 4s, 5s, dan seterusnya.

Representasi orbital 1s, 2s, dan 3s
(Sumber: McMurry, John E., Fay, Robert C., & Robinson, Jill K. 2016. Chemistry (7th edition). New Jersey: Pearson Education, Inc.)
(Sumber: McMurry, John E., Fay, Robert C., & Robinson, Jill K. 2016. Chemistry (7th edition). New Jersey: Pearson Education, Inc.)
Orbital p
Orbital p adalah orbital dengan l = 1 berbentuk seperti balon terpilin dengan dua cuping. Kedua cuping terletak pada dua sisi inti atom yang saling bersebrangan. Inti atom terletak pada bidang simpul orbital p, yakni di antara dua cuping yang masing-masing memiliki densitas elektron tinggi. Orbital p memiliki tiga jenis orientasi ruang, px, py, dan pz, sebagaimana terdapat tiga nilai ml yang mungkin, yaitu −1, 0, atau +1. Ketiga orbital p tersebut terletak saling tegak lurus pada sumbu x, y, dan z koordinat Kartesius dengan bentuk, ukuran, dan energi yang sama.

Representasi orbital 2p: px, py, dan pz
(Sumber: McMurry, John E., Fay, Robert C., & Robinson, Jill K. 2016. Chemistry (7th edition). New Jersey: Pearson Education, Inc.)
(Sumber: McMurry, John E., Fay, Robert C., & Robinson, Jill K. 2016. Chemistry (7th edition). New Jersey: Pearson Education, Inc.)
Orbital d
Orbital d adalah orbital dengan l = 2. Orbital d memiliki lima jenis orientasi, sebagaimana terdapat lima nilai ml yang mungkin, yaitu −2, −1, 0, +1, atau +2. Empat dari lima orbital d, antara lain dxy, dxz dyz, dan dx2−y2, memiliki empat cuping seperti bentuk daun semanggi. Orbital d kelima, dz2, memiliki dua cuping utama pada sumbu z dan satu bagian berbentuk donat pada bagian tengah.

Representasi orbital 3d: dz2, dx2−y2, dxy, dxz, dan dyz
(Sumber: Chang, Raymond & Goldsby, Kenneth A. 2016. Chemistry (12th edition). New York: McGraw-Hill Education)
(Sumber: Chang, Raymond & Goldsby, Kenneth A. 2016. Chemistry (12th edition). New York: McGraw-Hill Education)
Orbital f
Orbital f adalah orbital dengan l = 3. Orbital f memiliki tujuh jenis orientasi, sebagaimana terdapat tujuh nilai ml yang mungkin (2l + 1 = 7). Ketujuh orbital f memiliki bentuk yang kompleks dengan beberapa cuping.

Representasi ketujuh orbital 4f
(Sumber: Atkins, Peter & Jones, Loretta. 2010. Chemical Principles: The Quest for Insight (5th edition). New York: W.H. Freeman & Company)
(Sumber: Atkins, Peter & Jones, Loretta. 2010. Chemical Principles: The Quest for Insight (5th edition). New York: W.H. Freeman & Company)
Konfigurasi Elektron
Setelah memahami hubungan keberadaan elektron dalam atom dengan orbital pada teori atom mekanika kuantum, berikut akan dibahas konfigurasi elektron, yaitu penyusunan elektron-elektron dalam orbital-orbital pada kulit-kulit atom multi elektron. Aturan-aturan dalam penentuan konfigurasi elektron berdasarkan orbital, antara lain:
- Asas Aufbau: Elektron menempati orbital-orbital dimulai dari tingkat energi yang terendah, dimulai dari 1s, 2s, 2p, dan seterusnya seperti urutan subkulit yang terlihat pada gambar berikut.

Urutan tingkat energi subkulit
(Sumber: Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry: Structure and Dynamics (5th edition). New Jersey: John Wiley & Sons, Inc.)
(Sumber: Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry: Structure and Dynamics (5th edition). New Jersey: John Wiley & Sons, Inc.)
- Asas larangan Pauli: Tidak ada dua elektron dalam satu atom yang memiliki keempat bilangan kuantum yang sama. Setiap orbital maksimum diisi oleh 2 elektron yang memiliki spin yang berlawanan (ms = +½ dan ms = −½).
- Kaidah Hund: Jika ada orbital dengan tingkat energi yang sama, konfigurasi elektron dengan energi terendah adalah dengan jumlah elektron tak berpasangan dengan spin paralel yang paling banyak.

Diagram orbital dan konfigurasi elektron berdasarkan orbital dari 10 unsur pertama
(Sumber: Gilbert, Thomas N. et al. 2012. Chemistry: The Science in Context (3rd edition). New York: W. W. Norton & Company, Inc.)
(Sumber: Gilbert, Thomas N. et al. 2012. Chemistry: The Science in Context (3rd edition). New York: W. W. Norton & Company, Inc.)
Berdasarkan eksperimen, terdapat anomali konfigurasi elektron dari aturan-aturan di atas. Subkulit d memiliki kecenderungan untuk terisi setengah penuh atau terisi penuh. Contohnya, konfigurasi elektron 24Cr: [Ar] 4s1 3d5 lebih stabil dibanding [Ar] 4s2 3d4; dan 29Cu: [Ar] 4s1 3d10 lebih stabil dibanding [Ar] 4s2 3d9.
di Forum StudioBelajar.comnfigurasi elektron untuk ion monoatomik (seperti Na+, K+, Ca2+, S2-, Br–) dapat ditentukan dari konfigurasi elektron atom netralnya terlebih dahulu. Pada kation (ion bermuatan positif) monoatomik Ax+ yang bermuatan x+, sebanyak x elektron dilepas (dikurangi) dari kulit elektron terluar atom netral A. Pada anion (ion bermuatan negatif) monoatomik By− yang bermuatan y−, sebanyak y elektron ditangkap (ditambahkan) pada orbital level energi terendah yang masih belum penuh oleh elektron.
Contoh Soal Bilangan Kuantum
Tentukan konfigurasi elektron dan diagram elektron dari atom unsur dan ion monoatomik berikut.
a. 27Co
b. 32Ge
c. 20Mg2+
d. 26Fe3+
Pembahasan:
a. 27Co: 1s2 2s2 2p6 3s2 3p6 4s2 3d7 atau [Ar] 4s2 3d7
b. 32Ge: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2 atau [Ar] 4s2 3d10 4p2
c. 20Mg: 1s2 2s2 2p6 3s2 3p6 4s2 atau [Ar] 4s2
20Mg2+: 1s2 2s2 2p6 3s2 3p6 atau [Ar] (sebanyak 2 elektron dikurangi dari kulit terluar: 4s2−2)
d. 26Fe: 1s2 2s2 2p6 3s2 3p6 4s2 3d6 atau [Ar] 4s2 3d6
26Fe3+: 1s2 2s2 2p6 3s2 3p6 3d5 atau [Ar] 3d5 (sebanyak 3 elektron dikurangi dari kulit terluar: 4s2−2 3d6−1)
Langganan:
Komentar (Atom)